While adapting the H264 standard encoder x264 for RISC-V, we'While adapting the H264 standard encoder x264 for RISC-V, we've identified several operations that are challenging to implement efficiently with existing RVV instructions. In some cases, implementations require too many instructions, potentially impacting encoder performance.
...
This is an open collaboration. All ideas and contributions are valuable as we work together to enhance RISC-V's video codec capabilities.
Contact Information
Vector transpose instructions
Collection list
- vector transpose instruction
- absolute difference instructions
- zero-extended vmv.x.s
Vector transpose instructions
Intro
In x264, matrix transpose instructions are primarily used in two aspects: one is to achieve matrix transposition, and the other is to achieve permutation between vectors. Both uses are quite frequent.
...
Using RISC-V RVV, we have discovered two methods to perform matrix transposition(thanks camel-cdr for the assistance provided):
- Using segmented load or store
- Using vrgather
- Using vnsrl
Here, we use the example of transposing a 4x8 (2x4x4) matrix (transposing the left 4x4 and the right 4x4 separately) to illustrate these two methods.
Segmented load or store
In this way, we can use the `vssseg4e16.v` instruction to store each row of the original matrix into memory by columns, and then read them back by rows. Since we are transposing a 4x8 matrix, we also need to use `vslide` to combine the contents of the two registers together.
Code Block |
---|
// Using extra loads and stores, and use vslide to combine them .macro TRANSPOSE4x8_16 buf, bstride, v0, v1, v2, v3, t0, t1, t2, t3 vssseg4e16.v \v0, (\buf), \bstride vsetivli zero, 4, e16, mf2, ta, ma vle16.v \v0, (\buf) add \buf, \buf, \bstride vle16.v \v1, (\buf) add \buf, \buf, \bstride vle16.v \v2, (\buf) add \buf, \buf, \bstride vle16.v \v3, (\buf) add \buf, \buf, \bstride vle16.v \t0, (\buf) add \buf, \buf, \bstride vle16.v \t1, (\buf) add \buf, \buf, \bstride vle16.v \t2, (\buf) add \buf, \buf, \bstride vle16.v \t3, (\buf) add \buf, \buf, \bstride vsetivli zero, 2, e64, m1, tu, ma vslideup.vi \v0, \t0, 1 vslideup.vi \v1, \t1, 1 vslideup.vi \v2, \t2, 1 vslideup.vi \v3, \t3, 1 .endm // under VLEN=128 function transpose4x8_16_one vsetivli zero, 8, e16, m1, ta, ma mv t0, a0 vl4re16.v v0, (a0) li t1, 8 TRANSPOSE4x8_16 t0, t1, v0, v1, v2, v3, v8, v9, v10, v11 vs4r.v v0, (a0) ret endfunc |
...
For creating index by hand, the idea is to set the index for gathering vector N
to (i&3)*vl+(i&~3u)+N
, where i
is the element index obtained by vid.v.
Code Block |
---|
// Using vrgather with index created by hand .macro TRANSPOSE4x8_16_vrgather v0, v1, v2, v3, t0, t1, t2, t3, t4, t5, t6, t7, s0 vsetivli zero, 8, e16, m1, ta, ma vid.v \t0 li \s0, 8 vand.vi \t1, \t0, 3 vmul.vx \t1, \t1, \s0 vand.vi \t0, \t0, -4 vadd.vv \t4, \t1, \t0 vadd.vi \t5, \t4, 1 vadd.vi \t6, \t4, 2 vadd.vi \t7, \t4, 3 li \s0, 32 vsetvli zero, \s0, e16, m4, ta, ma vrgatherei16.vv \t0, \v0, \t4 vmv.v.v \v0, \t0 .endm // under VLEN=128 function transpose4x8_16_two vl4re16.v v0, (a0) TRANSPOSE4x8_16_vrgather v0, v1, v2, v3, v8, v9, v10, v11, v12, v13, v14, v15, t0 vs4r.v v0, (a0) ret endfunc |
...
This is also one of the main reasons why we want to add instructions similar to `trn1` and `trn2` in RVV.
Vnsrl
Olaf pointed out a new method to achieve matrix transposition, using the vnsrl instruction in RVV along with vslide instructions to achieve the effect of zip1 and zip2 in AArch64. Olaf provided detailed information for this method, and we are very grateful for his work. Below is an approach that works with VLEN=128:
Code Block |
---|
# VLEN=128 transpose one 4x4 matrix of 16-bit elements stored in 4 vreg: # a b c d a e i m # e f g h -----\ b f j n # i j k l -----/ c g k o # m n o p d h l p ## setup code: # li t1, 32 vsetvli t0, x0, e32, m1, ta, ma vslideup.vi v0, v1, 2 vslideup.vi v2, v3, 2 vmv1r.v v1, v2 # v0: a b c d e f g h # v1: i j k l m n o p vnsrl.wi v4, v0, 0 vnsrl.wx v6, v0, t1 # v4: a b e f i j m n # v6: c d g h k l o p vsetvli t0, x0, e16, mf2, ta, ma vnsrl.wi v0, v4, 0 vnsrl.wi v1, v4, 16 vnsrl.wi v2, v6, 0 vnsrl.wi v3, v6, 16 # v0: a e i m # v1: b f j n # v2: c g k o # v3: d h l p |
Absolute difference instructions
Intro
x264 need widening absolute difference accumulate operations which is 5%~6% in both x264 running time and specCPU 525.x264_r.
https://wiki.videolan.org/X264_asm_intro/#Example_2:_pixel_sad
Implementation in other ISAs
Aarch64
absolute difference: sabd/sabd
absolute difference(double-width result): sabdl/uabdl
add absolute difference: saba/uaba
add absolute difference(double-width result): sabal/uabal
x86
compute sum of absoulte difference: psadbw
Implementation in RISCV64
need 3~4 instructions to implement
Code Block |
---|
.macro uabd d0, s0, s1, t0
vmaxu.vv \d0, \s0, \s1
vminu.vv \t0, \s0, \s1
vsub.vv \d0, \d0, \t0
.endm
.macro sabd d0, s0, s1, t0
vmax.vv \d0, \s0, \s1
vmin.vv \t0, \s0, \s1
vsub.vv \d0, \d0, \t0
.endm
.macro uabal d0, s0, s1, t0, t1
vmaxu.vv \t1, \s0, \s1
vminu.vv \t0, \s0, \s1
vsub.vv \t0, \t1, \t0
vwaddu.wv \d0, \d0, \t0
.endm
.macro uabdl d0, s0, s1, t0, t1
vmaxu.vv \t1, \s0, \s1
vminu.vv \t0, \s0, \s1
vwsubu.vv \d0, \t1, \t0
.endm |
Zero-extended vmv.x.s
Intro
The vmv.x.s instruction copies a single SEW-wide element from index 0 of the source vector register to a destination
integer register. If SEW > XLEN, the least-signi cant XLEN bits are transferred and the upper SEW-XLEN bits are ignored. If
SEW < XLEN, the value is sign-extended to XLEN bits.
Implementation in RISCV64
Code Block |
---|
//uint16_t with zbb extension
vsetivli zero, 1, e16, m1, ta, ma
vmv.x.s a1, v1
zext.h a1, a1 |